Continuity of the time constant in a continuous model of first passage percolation

نویسندگان

چکیده

Etant donnés une dimension d≥2 et mesure finie ν sur (0,+∞), nous considérons ξ un processus ponctuel de Poisson Rd×(0,+∞) d’intensité dc⊗ν où dc désigne la Lebesgue Rd. Nous le modèle booléen Σ=⋃ (c,r)∈ξB(c,r) B(c,r) boule ouverte centrée en c rayon r. Pour tous x,y∈Rd, définissons T(x,y) comme temps minimal nécessaire pour voyager x à y voyageur qui se déplace vitesse 1 dehors Σ infinie dans Σ. Par application standard du théorème ergodique sous-additif Kingman, on peut facilement prouver que T(0,x) comporte μ‖x‖ quand ‖x‖ tend vers l’infini, μ est constante appelée percolation premier passage classique. Dans cet article, étudions régularité fonction associée au sous-jacent. Un des résultats clés contrôle uniforme longueur “bonnes” géodésiques. Au cours preuve, avons recours analogue continu l’inégalité BK unions d’occurrences disjointes d’évènements.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Formula for the Time - Constant of First - Passage Percolation

We consider first-passage percolation with positive, stationary-ergodic weights on the square lattice Z. Let T (x) be the first-passage time from the origin to a point x in Z. The convergence of the scaled first-passage time T ([nx])/n to the time-constant as n → ∞ can be viewed as a problem of homogenization for a discrete Hamilton-Jacobi-Bellman (HJB) equation. We derive an exact variational ...

متن کامل

The time constant vanishes only on the percolation cone in directed first passage percolation

We consider the directed first passage percolation model on Z2. In this model, we assign independently to each edge e a passage time t(e) with a common distribution F . We denote by ~ T (0, (r, θ)) the passage time from the origin to (r, θ) by a northeast path for (r, θ) ∈ R+ × [0, π/2]. It is known that ~ T (0, (r, θ))/r converges to a time constant ~μF (θ). Let ~ pc denote the critical probab...

متن کامل

Electronic Communications in Probability on the Non-convexity of the Time Constant in First-passage Percolation

We give a counterexample to a conjecture of Hammersley and Welsh (1965) about the convexity of the time constant in rst{passage percolation, as a functional on the space of distribution functions. The present counterexample only works for rst{passage percolation on Z Z d for d large.

متن کامل

On a Lower Bound for the Time Constant of First-passage Percolation

We consider the Bernoulli first-passage percolation on Z (d ≥ 2). That is, the edge passage time is taken independently to be 1 with probability 1− p and 0 otherwise. Let μ(p) be the time constant. We prove in this paper that μ(p1)− μ(p2) ≥ μ(p2) 1− p2 (p2 − p1) for all 0 ≤ p1 < p2 < 1 by using Russo’s formula. AMS classification: 60K 35. 82B 43.

متن کامل

On the Non-convexity of the Time Constant in First-passage Percolation

We give a counterexample to a conjecture of Hammersley and Welsh (1965) about the convexity of the time constant in first–passage percolation, as a functional on the space of distribution functions. The present counterexample only works for first–passage percolation on Z d for d large.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'I.H.P

سال: 2022

ISSN: ['0246-0203', '1778-7017']

DOI: https://doi.org/10.1214/21-aihp1222